Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 912: 169085, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38056636

ABSTRACT

Lima faces increasing water stress due to demographic growth, climate change and outdated water management infrastructure. Moreover, its highly centralized wastewater management system is currently unable to recover water or other resources. Hence, the primary aim of this study is to identify suitable wastewater treatment alternatives for both eutrophication mitigation and indirect potable reuse (IPR). For eutrophication mitigation, we examined MLE, Bardenpho, Step-feed, HF-MBR, and FS-MBR. For IPR, we considered secondary treatment+UF + RO + AOP or MBR + RO + AOP. These alternatives form part of a WWTP network at a district level, aiding Lima's pursuit of a circular economy approach. This perspective allows reducing environmental impacts through resource recovery, making the system more resilient to disasters and future water shortages. The methods used to assess these scenarios were Life Cycle Assessment for the environmental dimension; Life Cycle Costing for the economic perspective; and Multi-Criteria Decision Analysis to integrate both the quantitative tools aforementioned and qualitative criteria for social and techno-operational dimensions, which combined, strengthen the decision-making process. The decision-making steered towards Bardenpho for eutrophication abatement when environmental and economic criteria were prioritized or when the four criteria were equally weighted, while HF-MBR was the preferred option when techno-operational and social aspects were emphasized. In this scenario, global warming (GW) impacts ranged from 0.23 to 0.27 kg CO2eq, eutrophication mitigation varied from 6.44 to 7.29 g PO4- equivalent, and costs ranged between 0.12 and 0.17 €/m3. Conversely, HF-MBR + RO + AOP showed the best performance when IPR was sought from the outset. In the IPR scenario, GW impacts were significantly higher, at 0.46-0.51 kg CO2eq, eutrophication abatement was above 98 % and costs increased to ca. 0.44 €/m3.

2.
Mar Pollut Bull ; 189: 114785, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36881977

ABSTRACT

Marine-based activities are a critical source of plastic waste into the ocean. This is particularly important in countries with a competitive fishing industry, such as Peru. Thus, this study aimed to identify and quantify the major flows of plastic waste accumulating in the ocean from ocean-based sources within the Peruvian Economic Exclusive Zone. A material flow analysis was elaborated to analyze the stock of plastic and its release to the ocean by a set of Peruvian fleets, including the fishing industry, merchant vessels, cruises, and boating vessels. Results show that in 2018 between 2715 and 5584 metric tons of plastic waste entered the ocean. The fishing fleet was the most pollutant, representing approximately 97 % of the total. Moreover, fishing gear loss represented the highest single-activity contribution, although other sources, such as plastic packaging and antifouling emissions, have the potential to become vast sources of marine plastic pollution.


Subject(s)
Plastics , Waste Products , Peru , Waste Products/analysis , Environmental Pollution , Oceans and Seas , Environmental Monitoring
3.
Sci Total Environ ; 866: 161130, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36566856

ABSTRACT

Micro-mobility has increased in urban environments to reduce dependence on private vehicles. While electric micro-mobility alternatives are supposed to reduce environmental impacts, certain studies suggest that this can depend on the transport mode they substitute. In parallel, despite growing efforts, urban areas in developing and emerging economies struggle to implement sustainable mobility programs at a city-wide level. In March 2019 the first dockless e-scooter rental service appeared in the city of Lima, Peru. Although the social and environmental impacts of dockless e-scooters have been the center of multiple studies, these are mostly based in North America and Europe. Therefore, the main objective of the current study was to use Life Cycle Assessment (LCA) to address the environmental profile of e-scooter use in districts of central Lima. All stages of the life-cycle of e-scooters were modelled considering local conditions, from manufacture to end-of-life. A sensitivity analysis was conducted to account for the variability in environmental impact based on five parameters: lifespan, battery range, remaining battery charge, collection distance and collection vehicle. Results show that over two thirds of impacts are linked to manufacturing thanks to the low-carbon profile of electricity production in Peru, which lowers the burdens in the use phase, making e-scooter use competitive in the local market as compared to electric bikes or motorcycles. However, replacement trends show that net environmental gains are not always obtained. Poor maintenance and derived lifespan or battery range are important sources of variability for the impact categories assessed. Although e-scooters show potential for their implementation in developing cities with similar characteristics to Lima, we recommend that site-specific studies should be conducted to foster adaptive management strategies which take into account the means of transport being substituted by e-scooters.

4.
Sci Total Environ ; 856(Pt 2): 159049, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36167134

ABSTRACT

Aquaculture is an increasingly important supplier of food worldwide. However, due to its high dependence on agricultural and fishing resources, its growth is constantly constrained by environmental impacts beyond aquaculture production systems. Within the European Union, Spain accounts for approximately 25 % of total aquaculture production, which implies that environmental impacts in rivers and marine ecosystems must be monitored to understand the role of aquaculture systems. While studies on the environmental performance of mussels or turbot production have been reported in the literature, Spanish rainbow trout (Oncorhynchus mykiss) has not received much attention despite its relative importance. In this sense, a Life Cycle Assessment (LCA) study of rainbow trout produced in a medium-sized plant in Galicia (NW Spain) was carried out in the present study. The study considered the production of round weight trout, as well as some commonly produced processed products, including filleting. The life cycle modelling included a high level of primary data in the foreground system. In addition to the widely considered environmental impact categories for this activity (e.g., global warming potential, terrestrial acidification and freshwater eutrophication), the recent proposed antibiotic resistance (ABR) enrichment impact category was included to explore the potential impact of antibiotic release in freshwater microbiota. The results highlighted the high contribution of aquafeed to most impact categories, due to upstream agricultural and fishing processes, whereas farm operation was responsible for the larger part of the impact in freshwater eutrophication, mainly due to direct emissions of nutrients from fish feeding. Amoxicillin release to recipient water bodies was the main driver to the ABR enrichment category. In contrast, the processing phase (i.e., gutting, freezing and packaging) showed low environmental burdens. In order to improve the environmental performance of the rainbow trout production system, decreasing the feed conversion ratio (FCR), shifting to renewable energy, using low environmental burden ingredients in aquafeed, and alternatives to control diseases without antibiotics could be considered.


Subject(s)
Oncorhynchus mykiss , Animals , Ecosystem , Spain , Aquaculture , Life Cycle Stages
5.
Sci Total Environ ; 846: 157295, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35839896

ABSTRACT

Waste management is a critical policy towards the reduction of environmental impacts to air, soil and water. Many Latin American countries, however, lack a correct waste management system in many cities and rural areas, leading to the accumulation of unmanaged waste in illegal or unregulated dumpsites. The case of Peru is of interest, as it hosts 5 of the 50 largest dumpsites in the world. An erratic waste management compromises climate actions for Peru to commit with the Paris Agreement, as no correct closure systems are established for these dumpsites. Therefore, the main objective of this study is to assess the contribution of the past and present biodegradable waste produced and disposed of in the most critical open dumpsters to the overall annual greenhouse gas (GHG) emissions of Peru using the IPCC model. Thereafter, the climate change mitigation potential of possible dumpsite closure strategies based on a selection of technologies, including economic feasibility, were estimated. Results show that cumulative GHG emissions in 2018 for the 24 critical dumpsites evaluated added up to 704 kt CO2 eq. and a cumulative value of 4.4 Mt CO2 eq. in the period 2019-2028, representing over 40 % of solid waste emissions expected by 2030. Mitigation potentials for these emissions tanged from 91 to 970 kt CO2 eq. in the ten-year period depending on the mitigation strategies adopted. The costs of these strategies are also discussed and are expected to be of utility to complement Peru's waste management commitments in the frame of the Paris Agreement.


Subject(s)
Greenhouse Gases , Refuse Disposal , Carbon Dioxide/analysis , Climate Change , Greenhouse Effect , Peru , Refuse Disposal/methods , Solid Waste/analysis
6.
Sci Total Environ ; 838(Pt 3): 156376, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35662598

ABSTRACT

Peru is promoting the adoption of agroforestry systems with the aim to halt the deforestation of tropical forests caused by smallholder farmers. However, deficient soil conservation practices and nutrient management are common among the targeted smallholders, hampering the success of this strategy. In this study, we explore the potential of valorizing municipal biowaste as compost to be used as soil amendment in coffee agroforestry systems and in silvopastoral systems. The analysis was concentrated in four Peruvian regions and the most populous city in each of them. For lands with coffee production, it was assumed that 90 kg N ha-1 (i.e., 50% of the N requirements) should come from compost, while for pastures, the requirement was 40 kg P ha-1. We found that composting could lead to large greenhouse gas (GHG) reductions compared with the current waste disposal methods (i.e., deep dumping and landfilling), as it only emits 5-10% of the GHG emissions produced with the other methods. Nonetheless, the area of agroforestry and silvopastoral systems that could be fertilized with compost obtained from the main city of each region is limited and insufficient. If all compost were to be used for the coffee agroforestry system, less than 3% of the coffee agroforestry area could be fertilized, while in the case of pastures, only 4% would be attained. Large amounts of compost could be obtained from Lima, the most populated city; however, its transportation to the agroforestry areas would increase compost GHG emissions by 15-60%. Although composting municipal food waste and loss may bring GHG benefits and should be promoted, its use as a fertilizer requires mixing with N-rich sources to improve its nutrient quality.


Subject(s)
Greenhouse Gases , Refuse Disposal , Coffee , Food , Peru , Refuse Disposal/methods , Soil
7.
Integr Environ Assess Manag ; 18(5): 1206-1220, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34236749

ABSTRACT

Governments in the Global South have recently started to align their public procurement regulations considering Green Public Procurement (GPP) guidelines to achieve Sustainable Development Goal 12. In this context, it is important to establish environmental criteria to help decision making after analyzing the variety of options available in the market. Thus, using as examples two of the most acquired products in public procurement in Peru: Medium-density particleboard melamine furniture and paper offset, the aim of this paper is to determine the main environmental hotspots and therefore show the path to foster GPP in Peru. To achieve this goal, a Life Cycle Assessment was carried out considering it is a suitable environmental management tool to quantify environmental impacts. For this, a set of scenarios were modeled and compared for each of the two products selected, covering different geographical and technological options that are currently purchased by the Peruvian government. Results demonstrated that it is possible to attain considerable reductions in the environmental impact of the products analyzed if the main critical stages throughout their life cycle are identified and adequate solutions are applied to avoid burden shifting. Moreover, we argue that it is important for developing countries to carry out case-specific life-cycle inventories as they provide higher-quality information based on the particular characteristics of regional or local industries, allowing the determination of more realistic environmental impact mitigation benchmarks. Nevertheless, the inclusion of lifecycle-based criteria in GPP must be performed cautiously, avoiding command and control regulations, as numerous challenges remain in terms of capacity building, environmental awareness, and environmental information, and transparency in emerging and developing economies. Integr Environ Assess Manag 2022;18:1206-1220. © 2021 SETAC.


Subject(s)
Environment , Sustainable Development , Peru
8.
Sci Total Environ ; 818: 151686, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34808165

ABSTRACT

Peru has become one of the world's main agricultural hubs for a wide range of fruits and vegetables. Two of these products, avocado and green asparagus, have raised attention in recent years in the international scene from an environmental perspective due to the high amounts of water they require, as well as the long air and marine freighting distances to export these products to Europe, Asia or the US. Consequently, the aim of the current study was to perform an environmental assessment of these two products using two life-cycle methods: carbon and water footprint. For the latter, water scarcity, acidification, eco-toxicity and eutrophication impact categories have been selected for assessment. Inventory data were gathered from six different companies located in different regions of the hyper-arid Peruvian coast. The results report that the products are not carbon intensive and are in line with other similar plant-based products. Conversely, the hyper-arid conditions of the cultivation sites require a large volume of groundwater to fulfill the needs of the crops. Interestingly, even though this may lead to overexploitation of groundwater resources in the absence of appropriate management policies, the low mobility of pollutants, namely pesticides, constitutes a natural barrier to protect the degradation of natural water bodies. Similarly, highly technified irrigation systems have allowed minimizing the amounts of water used per hectare. In conclusion, results from this study may be useful in more concise environmental assessment studies on food products and diets, considering the consumption of these Peruvian products in many countries in the world. Furthermore, results are also important at regional level since they depict the carbon and water performance of these products and can also be accompanied by cross-cutting certification schemes, including Product Environmental Footprint Category Rules Guidance.


Subject(s)
Agriculture , Asparagus Plant , Environment , Persea , Agriculture/methods , Asparagus Plant/growth & development , Environmental Monitoring , Eutrophication , Peru , Vegetables
10.
Waste Manag ; 124: 314-324, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33647557

ABSTRACT

Municipal solid waste (MSW) management is an important challenge in developing and emerging countries, where two realities co-exist. On the one hand, their metropolitan cities exhibit an integrated MSW system with a specialized fleet for the collection and landfills for the final disposal, concentrating on environmental initiatives such as municipal recycling programs. On the other hand, their regional cities show an MSW system based on adapted transports for collection and open dumps for final disposal. Besides, they face other environmental problems due to local conditions. This research proposes a life cycle assessment (LCA) approach to close the gap between these two realities. In particular, we study the city of Valdivia (Chile), one of the main regional capitals of South America, which shares similarities with other southern regional cities in the Global South. This city disposes 95% of its MSW in open dumps and presents one of the highest environmental pollution rates in Latin America. We analyze the greenhouse gas (GHG) emissions and energy performance of six scenarios, seeking a solution for these problems. The results obtained show that a waste-to-energy scenario would generate savings of GHG emission and particulate matter, reaching 11.3% and 21.8%, respectively. Using our LCA approach, we can provide environmental evidence to highlight the importance of improving MSW management in regional cities, closing the gap with MSW management in metropolitan cities, and contributing to national targets such as United Nations Sustainable Development Goals and Nationally-Determined Contributions.


Subject(s)
Refuse Disposal , Waste Management , Animals , Cities , Developing Countries , Life Cycle Stages , Solid Waste/analysis , South America
11.
Sci Total Environ ; 778: 146227, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33714102

ABSTRACT

The centralization-decentralization dichotomy in wastewater treatment management has been a recurrent topic of discussion in the urban context. The escalation of environmental hazards linked to increasing mismanaged wastewater flows in emerging or developing cities has vivified this conundrum. It is argued that there is a wide range of parameters to identify the optimal level of centralization-decentralization that must be implemented. In many cases, this prevents decision-makers from having a clear picture of the most appropriate management choices that must be undertaken. Hence, the main objective of the current discussion consists of an in-depth comparison between centralized wastewater treatment systems and decentralized systems with source separation in urban environments of the Global South. Moreover, a set of actions that should be considered in order to upgrade wastewater treatment systems amidst the existence of numerous economic, social and environmental constraints are analyzed. Considering the constraints of megacentralization as a preferred option, we argue that decision-makers should restrain from entering a centralization-decentralization dichotomy, seeing the process as a gradient between the two concepts. In fact, we advocate combining the benefits of each of the two perspectives to generate an adaptive management, site-specific solution for urban environments. For this, the inclusion of quantitative management tools, such as life-cycle environmental or cost management methodologies, in multi-objective optimization models, constitutes an interesting path forward towards fostering comprehensive policy support.

12.
Sci Total Environ ; 761: 144094, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33360652

ABSTRACT

Life cycle assessment (LCA) has been widely applied in many different sectors, but the marine products and seafood segment have received relatively little attention in the past. In recent decades, global fish production experienced sustained growth and peaked at about 179 million tonnes in 2018. Consequently, increased interest in the environmental implications of fishery products along the supply chain, namely from capture to end of life, was recently experienced by society, industry and policy-makers. This timely review aims to describe the current framework of LCA and its application to the seafood sector that mainly focused on fish extraction and processing, but it also encompassed the remaining stages. An excess of 60 studies conducted over the last decade, along with some additional publications, were comprehensively reviewed; these focused on the main LCA methodological choices, including but not limited to, functional unit, system boundaries allocation methods and environmental indicators. The review identifies key recommendations on the progression of LCA for this increasingly important sustaining seafood sector. Specifically, these recommendations include (i) the need for specific indicators for fish-related activities, (ii) the target species and their geographical origin, (iii) knowledge and technology transfer and, (iv) the application and implementation of key recommendations from LCA research that will improve the accuracy of LCA models in this sector. Furthermore, the review comprises a section addressing previous and current challenges of the seafood sector. Wastewater treatment, ghost fishing or climate change, are also the objects of discussion together with advocating support for the water-energy-food nexus as a valuable tool to minimize environmental negativities and to frame successful synergies.


Subject(s)
Climate Change , Seafood , Animals , Life Cycle Stages
13.
J Environ Manage ; 278(Pt 1): 111459, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33120089

ABSTRACT

Anaerobic digestion (AD) of organic waste, although widely practiced, may require suitable accompanying treatments to enhance the degradability of complex materials. Since these may require significant efforts in terms of energy and chemical demand, careful assessment of their overall environmental sustainability is mandatory to evaluate their full-scale feasibility. The study aims to represent the environmental profile of ultrasonication (US) applied as a post-treatment of anaerobic digestion of agro-industrial organic residues. There is an interest in the US treatment for the processing of complex organic materials prior to AD in order to enhance the hydrolysis of complex organic substrates and increase the biogas yield of the biological process. An attributional, process-based life cycle assessment (LCA) study was applied to quantify and compare the potential environmental impacts of an AD plant, the biogas utilization options as well as the different digestate processing alternatives grouped into a set of 16 scenarios. Based on the results, upgrading of biogas and bio-methane use as vehicle fuel instead of energy generation from CHP or fuel cell was recommended due to the lower impact on GWP. Similarly, composting was a suitable option to reduce environmental impacts compared to belt drying. From the uncertainty analysis, AD without US as post-treatment proves to be more sustainable in terms of GWP compared to when US is used, showing net savings in GHG emissions especially when upgrading of biogas is applied. The analysis provides useful indications to policy makers to define sustainable management alternatives for organic residues as well as identify the environmental advantages associated with biogas utilization and digestate treatment and disposal alternatives.


Subject(s)
Carbon Footprint , Ultrasonics , Anaerobiosis , Biofuels , Methane
14.
Foods ; 9(12)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260541

ABSTRACT

Food loss and waste (FLW) has become a central concern in the social and political debate. Simultaneously, using FLW as a bioenergy source could significantly contribute to closing the carbon cycle by reintroducing energy into the food supply chain. This study aims to identify best strategies for FLW management in each of the 17 regions in Spain, through the application of a Life Cycle Assessment. To this end, an evaluation of the environmental performance over time between 2015 and 2040 of five different FLW management scenarios implemented in a framework of (i) compliance and (ii) non-compliance with the targets of the Paris Agreement was performed. Results revealed savings in the consumption of abiotic resources in those regions in which thermal treatment has a strong presence, although their greenhouse gas (GHG) emissions in a scenario of compliance with climate change targets are higher. In contrast, scenarios that include anaerobic digestion and, to a lesser extent those applying aerobic composting, present lower impacts, including climate change, suggesting improvements of 20-60% in non-compliance and 20-80% in compliance with Paris Agreement targets, compared to the current scenarios.

15.
Foods ; 9(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207725

ABSTRACT

Current food consumption patterns must be revised in order to improve their sustainability. The nutritional, environmental, and economic consequences of these dietary patterns must be taken into consideration when diet guidelines are proposed. This study applied a systematic optimization methodology to define sustainable dietary patterns complying with nutritional, environmental, and economic issues. The methodology was based on a multi-objective optimization model that considered a distance-to-target approach. Although the three simultaneous objectives (maximal nutritional contribution, minimal greenhouse gas emissions, and minimal costs) could be divergent, the proposed model identified the optimal intake of each food product to achieve the maximal level of nutritional, environmental, and economic diets. This model was applied to six different eating patterns within the Spanish context: one based on current food consumption and five alternative diets. The results revealed that dietary patterns with improved nutritional profiles and reduced environmental impacts could be defined without additional costs just by increasing the consumption of vegetables, fruits, and legumes, while reducing the intake of meat and fish.

16.
Sci Total Environ ; 748: 141410, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32798877

ABSTRACT

The COVID lockdown has affected food purchases and eating habits. In this regard, this short communication assesses the nutritional and environmental impacts of these changes during the COVID lockdown in Spain, by applying Life Cycle Assessment and an energy- and nutrient-corrected functional unit. Three environmental impacts were studied (Global Warming Potential, Blue Water Footprint and Land Use) and a total of seven weekly diet scenarios were designed: two pre-COVID diets for March and April in 2019 (MAR19, APR19), one COVID diet (COVID) and two alternative diets, one based on the National Dietary Guidelines (NDG) and another one on the Planetary Health Diet (PHD). Results show that the COVID diet had larger energy intake and lower nutritional quality, as well as higher environmental impacts (between 30 and 36%) than the pre-COVID eating patterns. Further research is needed to account for food affordability within this assessment, as well as to analyze how eating patterns will evolve after the COVID lockdown. Finally, the definition of short guidelines for sustainable food behaviors for future possible lockdowns is suggested, as well as the introduction of sustainable indicators within NDGs.


Subject(s)
Coronavirus Infections , Diet , Food Supply , Nutritional Status , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Humans , SARS-CoV-2 , Spain
17.
Sci Total Environ ; 747: 141114, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-32771780

ABSTRACT

Peru has one of the fastest-growing economies in Latin America, but there are concerns regarding how long this can be sustained. Negative environmental impacts are increasing due to the pressures of a growing urban population and competition for natural resources. This study explores stakeholder perceptions linked to nexus governance in the context of integrated management of natural resources, particularly water, and the environmental, socio-economic and governance challenges constraining the achievement of UN Sustainable Development Goals (SDGs). Our analysis focused on the urban and rural areas associated with the city of Arequipa, an economically dynamic region subject to extreme levels of water stress. Face-to-face interviews with key informants were conducted to identify mechanisms that have enhanced successful multi-sectoral collaboration, and to assess challenges in promoting sustainable economic development. A workshop prioritised the identified challenges and an online survey was then used to assess stakeholder interest in and influence over nexus governance of water with other natural resources. Stakeholder mapping revealed a complex network of actors involved in nexus governance, where successful collaboration could be promoted through formal and informal mechanisms, including exemplar policies and initiatives across sectors and actors. Shared visions between stakeholders were identified as well as contradictory priorities relating to the sustainable management of natural resources. A key finding that emerged was the need to promote adaptation in water and land management (SDG 6) due to perceived impacts of extreme climate events (SDG 13), urban population growth (SDG 11), and increased sectoral water demands. This situation in combination with poor governance and lack of planning has exposed the vulnerability of Arequipa water supply system to future shocks. Urgent action will be needed to raise stakeholder awareness, strengthen governance and enforcement, and agree on a collective vision for integrated land and water planning if the SDGs are to be achieved.


Subject(s)
Sustainable Development , Water , Conservation of Natural Resources , Peru , Water Supply
18.
Sci Total Environ ; 720: 137586, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32325583

ABSTRACT

This study aims to evaluate the life cycle environmental implications of producing fiber-reinforced biocomposite pellets, compared with sugarcane- and petroleum-based polyethylene (PE) pellets. Life Cycle Assessment (LCA) methodology is used to evaluate the production of four types of pellets. LCA allows the evaluation of the benefits of improving the production of biobased materials by replacing part of the sugarcane bioPE with bagasse fibers. The functional unit selected was the production of 1 kg of plastic pellets. Primary data were collected from laboratory tests designed to obtain pulp fibers from bagasse and mix them with sugarcane bioPE. Two processes were studied to obtain fibers from bagasse: soda fractionation and hot water-soda fractionation. The results from the LCA show environmental improvements when reducing the amount of bioPE by replacing it with bagasse fibers in the categories of global warming, ozone formation, terrestrial acidification and fossil resource scarcity, when comparing to 100% sugarcane bioPE, and a reduction in global warming and fossil resource scarcity when compared to fossil-based PE. In contrast, results also indicate that there could be higher impacts in terms of ozone formation, freshwater eutrophication, and terrestrial acidification. Even though biocomposites result as a preferred option to bioPE, several challenges need to be overcome before a final recommendation is placed. The sensitivity analysis showed the importance of the energy source on the impacts of the processing of fibers. Thus, using clean energy to produce biobased materials may reduce the impacts related to the production stage. These results are intended to increase the attention of the revalorization of these residues and their application to generate more advanced materials. Further outlook should also consider a deeper evaluation of the impacts during the production of a plastic object and possible effects of the biobased materials during final disposal.


Subject(s)
Saccharum , Cellulose , Eutrophication , Global Warming
19.
Sci Total Environ ; 718: 137323, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32092516

ABSTRACT

Cable cars have slowly become a popular means of transport beyond their classical use at ski resorts. In Latin America their use has thrived to access archaeological sites in the Andes, but also in urban environments for mass transit. Despite some apparent benefits of these systems, the current literature is scarce in terms of quantifying the environmental profile of cable cars. Hence, their environmental performance as compared to other means of transport remains essentially unexplored. Therefore, the main objective of this study was to provide a comparative environmental analysis, using Life Cycle Assessment (LCA) methodology, of the two existing transport methods to visit the Kuelap Archaeological Complex, in northern Peru: a recently built cableway system and the alternative unpaved winding road. An attributional LCA perspective was performed for several impact categories, including global warming and particulate matter formation. In addition, a scenario analysis and an uncertainty analysis, using Monte Carlo simulation, were conducted to account for deterministic and stochastic results interpretation. Results demonstrated that succulent environmental benefits are attained when cable cars substitute road transport in complex Andean orographic conditions. However, the rebound effects of reducing traveling times significantly, as well as social and biodiversity aspects, should be analyzed in further depth to complement the environmental analysis.

20.
Public Health Pract (Oxf) ; 1: 100020, 2020 Nov.
Article in English | MEDLINE | ID: mdl-34171047

ABSTRACT

Peru is arguably providing a robust governmental response in the initial stages of the COVID-19 outbreak, with early lockdown measures and the implementation of relatively ambitious economic safety nets to protect families and enterprises. Despite this initial optimism, structural deficiencies in the public health system, high informality in the labor market, the new wave of migrants from Venezuela and the extremely diverse cultural characteristics of many areas exacerbate the number of potentially highly vulnerable groups that may be left out of these safety nets unless additional efforts are enforced to improve social coverage. In this discussion we aim to identify some of these groups, highlighting the main challenges they face during the outbreak and proposing certain mitigation measures to balance the social policy response.

SELECTION OF CITATIONS
SEARCH DETAIL
...